

MOS INTEGRATED CIRCUIT μ PD178002, 178003

8-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD178002 and 178003 are 8-bit single-chip CMOS microcontrollers that incorporate hardware for digital tuning systems.

The CPU uses the 78K/0 architecture, which makes it easy to implement high-speed access to internal memory and control of peripheral hardware. Also, the instructions used are the high-speed 78K/0 instructions, suitable for system control.

The peripheral hardware includes an input/output port, 8-bit timer, A/D converter, serial interface, power-on-clear circuits, as well as a pre-scaler for digital tuning, a PLL frequency synthesizer, and a frequency counter.

The μ PD178P018A, one-time PROM or EPROM versions that can be operated in the same supply voltage range as for the mask ROM versions, and various development tools, are also available.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD178003 Subseries User's Manual: U13033E 78K/0 Series User's Manual — Instructions: U12326E

FEATURES

Program memory (ROM) capacity

 μ PD178002: 16 Kbytes μ PD178003: 24 Kbytes

- Data memory (RAM) capacity: 512 bytes
- Instruction cycle: 0.44 μ s (4.5 MHz crystal resonator used)
- Selected peripheral hardware of the μPD178018A Subseries
 General-purpose I/O ports, A/D converter, serial interface, timer, frequency counter, power-on-clear circuits.
- On-chip hardware for a PLL frequency synthesizer.

Dual modulus pre-scaler, programmable divider, phase comparator, charge pump.

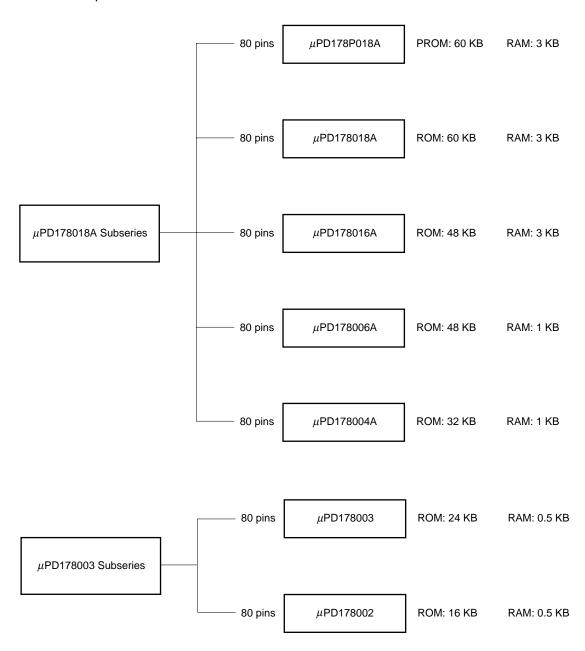
- · Vector interrupt sources: 8
- Supply Voltage: VDD = 4.5 to 5.5 V (during PLL operation)

 $V_{DD} = 3.5$ to 5.5 V (during CPU operation, when the system clock is fx/2 or lower)

VDD = 4.5 to 5.5 V (during CPU operation, when the system clock is fx)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.


APPLICATIONS

Car stereo, home stereo systems.

ORDERING INFORMATION

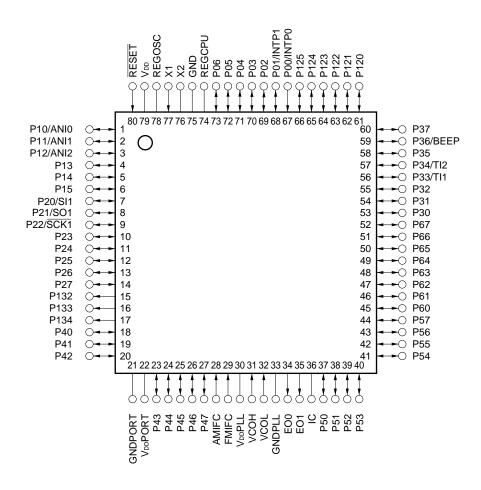
Part Number	Package
μPD178002GC-××-3B9	80-pin plastic QFP (14 \times 14 mm, 0.65 mm pitch)
μPD178003GC-××-3B9	80-pin plastic QFP (14 \times 14 mm, 0.65 mm pitch)

μ PD178003 AND μ PD178018A SUBSERIES LINEUP

OVERVIEW OF FUNCTIONS

Item	Part Number	μPD178002	μPD178003				
Internal	ROM (ROM configuration)	16 Kbytes (mask ROM)	24 Kbytes (mask ROM)				
memory	High-speed RAM	512 bytes					
General-purpose	e registers	8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Minimum instruc	ction execution time	0.44 μs/0.88 μs/1.78 μs/3.56 μs/7.11 μ resonator used)	s/14.22 μ s (with 4.5 MHz crystal				
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjust, etc. 					
I/O port		Total: 62 CMOS input: 1 CMOS I/O: 54 N-ch open-drain I/O: 4 N-ch open-drain output: 3					
A/D converter		8-bit resolution × 3 channels					
Serial interface		3-wire serial I/O mode: 1 channel					
Timer		Basic timer (timer carry FF (10 Hz)):8-bit timer/event counter:	1 channel 2 channels				
Buzzer (BEEP)	output	1.5 kHz, 3 kHz, 6 kHz					
Vectored	Maskable	Internal: 5, external: 2					
interrupt sources	Software	1					
Test input		Internal: 1					
PLL frequency synthesizer	Division mode	Two types • Direct division mode (VCOL pin) • Pulse swallow mode (VCOH and VCOL pins)					
	Reference frequency	7 types selectable by program (1, 3, 5, 9, 10, 25, 50 kHz)					
	Charge pump	Error out output: 2					
	Phase comparator	Unlock detectable by program					
Frequency coun	ter	Frequency measurement AMIFC pin: for 450 kHz count FMIFC pin: for 450 kHz/10.7 MHz count					
Standby function	n	HALT mode STOP mode					
Reset		Reset by RESET pin Reset by power-on clear circuit (3-value detection) Detection of less than 4.5 VNote (CPU clock: fx) Detection of less than 3.5 VNote (CPU clock: fx/2 or less and on power application) Detection of less than 2.5 VNote (in STOP mode)					
Supply voltage		 V_{DD} = 4.5 to 5.5 V (with PLL operating) V_{DD} = 3.5 to 5.5 V (with CPU operating, CPU clock: fx/2 or less) V_{DD} = 4.5 to 5.5 V (with CPU operating, CPU clock: fx) 					
Package		80-pin plastic QFP (14 × 14 mm, 0.65 mm pitch)					

Note These voltage values are maximum values. The reset is actually executed at a voltage lower than these values.


TABLE OF CONTENTS

1. PIN CONFIGURATION (TOP VIEW)	5
2. BLOCK DIAGRAM	7
3.1 Port Pins	8 9
4. MEMORY SPACE	13
5. PERIPHERAL HARDWARE FUNCTION FEATURES 5.1 Ports 5.2 Clock Generator 5.3 Timer 5.4 Buzzer Output Control Circuit 5.5 A/D Converter 5.6 Serial Interfaces 5.7 PLL Frequency Synthesizer 5.8 Frequency Counter	14 15 17 18 19 20
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS	22
7. STANDBY FUNCTION	26
8. RESET FUNCTION	26
9. INSTRUCTION SET	27
10. ELECTRICAL SPECIFICATIONS	29
11. PACKAGE DRAWINGS	38
12. RECOMMENDED SOLDERING CONDITIONS	39
APPENDIX A. DIFFERENCES AMONG μ PD178003 AND μ PD178018A SUBSERIES	40
APPENDIX B. DEVELOPMENT TOOLS	41
ADDENDIY C. DELATED DOCUMENTS	11

1. PIN CONFIGURATION (TOP VIEW)

• 80-PIN PLASTIC QFP (14 \times 14 mm, 0.65 mm pitch)

 μ PD178002GC-xx-3B9 μ PD178003GC-xx-3B9

Cautions 1. Connect the IC (Internally Connected) pin directly to GND.

- 2. Connect VDDPORT and VDDPLL pins to VDD.
- 3. Connect the GNDPORT and GNDPLL pins to GND.
- 4. Connect each of the REGOSC and REGCPU pins to GND via a 0.1 μ F capacitor.

AMIFC: AM Intermediate Frequency Counter Input P60 to P67: Port 6

* ANI0 to ANI2: A/D Converter Input P120 to P125: Port 12

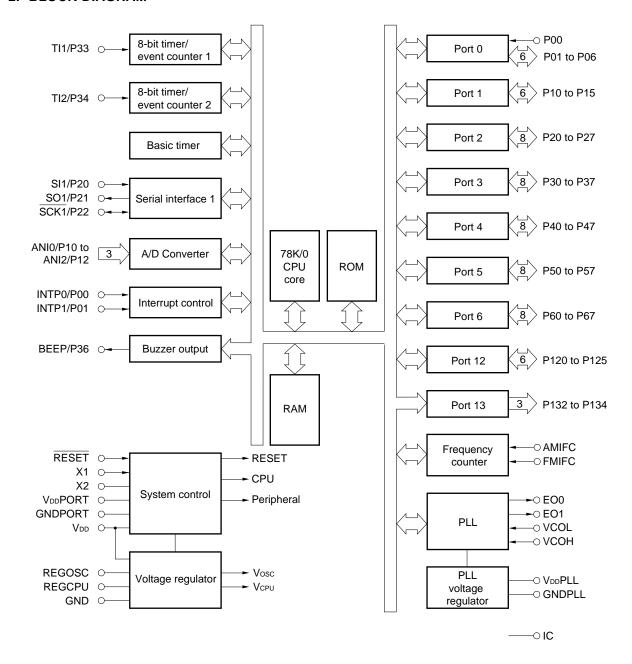
BEEP: Buzzer Output P132 to P134: Port 13

EO0, EO1: Error Out Output REGCPU: Regulator for CPU Power Supply

FMIFC: FM Intermediate Frequency Counter Input REGOSC : Regulator for Oscillator

GND: Ground RESET: Reset Input

GNDPLL: PLL Ground SCK1: Serial Clock Input/Output


GNDPORT: Port Ground SI1: Serial Data Input
IC: Internally Connected SO1: Serial Data Output
INTP0, INTP1: Interrupt Inputs TI1, TI2: Timer Clock Input

P00 to P06: Port 0 VCOL, VCOH: Local Oscillator Input
P10 to P15: Port 1 VDD: Power Supply
P20 to P27: Port 2 VDDPLL: PLL Power Supply
P30 to P37: Port 3 VDDPORT: Port Power Supply

P40 to P47: Port 4 X1, X2: Crystal Resonator Connection

P50 to P57: Port 5

2. BLOCK DIAGRAM

Remark The internal ROM capacity varies depending on the product.

7

3. PIN FUNCTIONS

3.1 Port Pins

	Pin Name	I/O	Fund	ction	After Reset	Alternate Function		
	P00	Input	Port 0	Input only	Input	INTP0		
	P01	I/O	7-bit input/output port	Input/output mode can be specified	Input	INTP1		
	P02 to P06			in 1-bit units.		_		
	P10 to P12	I/O	Port 1 6-bit input/output port		Input	ANI0 to ANI2		
۲	P13 to P15		Input/output mode can be specified in	1-bit units.		_		
	P20	I/O	Port 2		Input	SI1		
	P21		8-bit input/output port			SO1		
	P22		Input/output mode can be specified in	1-bit units.		SCK1		
	P23 to P27					_		
	P30 to P32	I/O	Port 3		Input	_		
	P33	•	8-bit input/output port			TI1		
	P34		Input/output mode can be specified in		TI2			
	P35	•			_			
	P36				BEEP			
	P37				_			
	P40 to P47	I/O						
	P50 to P57	I/O	Port 5 8-bit input/output port Input/output mode can be specified in	1-bit units.	Input	_		
	P60 to P63	I/O	Port 6 8-bit input/output port	Middle voltage N-ch open-drain input/output port	Input	_		
	P64 to P67		Input/output mode can be specified in 1-bit units.	LEDs can be driven directly.				
	P120 to P125	I/O	Port 12 6-bit input/output port Input/output mode can be specified in	Input	_			
	P132 to P134	Output	Port 13 3-bit output port N-ch open-drain output port.	_	_			

3.2 Non-port Pins

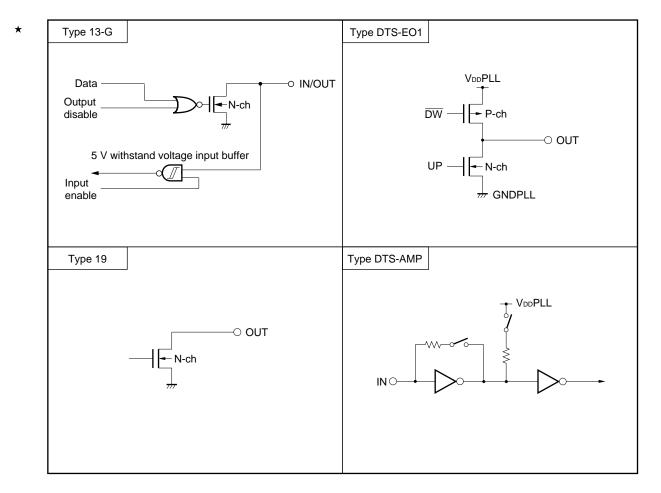
Pin Name	I/O	Function	After Reset	Alternate Function
INTP0, INTP1	Input	External maskable interrupt input for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.	Input	P00, P01
SI1	Input	Serial interface serial data input	Input	P20
SO1	Output	Serial interface serial data output	Input	P21
SCK1	I/O	Serial interface serial clock input/output	Input	P22
TI1	Input	External count clock input to 8-bit timer (TM1)	Input	P33
TI2		External count clock input to 8-bit timer (TM2)		P34
BEEP	Output	Buzzer output	Input	P36
ANI0 to ANI5	Input	A/D converter analog input	Input	P10 to P15
EO0, EO1	Output	Error out output from charge pump of the PLL frequency synthesizer	_	_
VCOL	Input	Inputs PLL local band frequency (In HF, MF mode)		_
VCOH	Input	Inputs PLL local band frequency (In VHF mode)		_
AMIFC	Input	Inputs AM intermediate frequency counter		_
FMIFC	Input	Inputs FM intermediate frequency or AM intermediate frequency counter	_	_
RESET	Input	System reset input	_	_
X1	Input	Connecting crystal resonator for system clock oscillation	_	_
X2	_		_	_
REGOSC	_	Oscillation regulator. Connect to GND via a 0.1 μ F capacitor.	_	_
REGCPU	_	CPU power supply regulator. Connect to GND via a 0.1 μ F capacitor.	_	_
V _{DD}	_	Positive power supply	_	_
GND	_	Ground	_	_
VDDPORT	_	Positive power supply for port block	_	_
GNDPORT	_	Ground for port block	_	_
V _{DD} PLL ^{Note}	_	Positive power supply for PLL	_	_
GNDPLLNote	_	Ground for PLL	_	_
IC	_	Internally connected. Connect directly to GND or GNDPORT.	_	_

Note Connect a capacitor of about 1000pF between the VDDPLL pin and GNDPLL pin.

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

Table 3-1. Types of Pin Input/Output Circuits


	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins				
Ī	P00/INTP0	2	Input	Connect to GND or GNDPORT.				
İ	P01/INTP1, P02 to P06	8	I/O	Set in general-purpose input port mode by software and				
İ	P10/ANI0 to P12/ANI2	11-A		independently connect to VDD, VDDPORT, GND, or GNDPORT				
*	P13 to P15	5		via a resistor.				
İ	P20/SI1	8						
İ	P21/SO1	5						
İ	P22/SCK1	8						
İ	P23	5						
İ	P24	8						
ı	P25 to P27	10						
İ	P30 to P32	5						
İ	P33/TI1, P34/TI2	8						
Ī	P35	5						
	P36/BEEP							
ļ	P37	_						
	P40 to P47	5-G						
	P50 to P57	5						
*	P60 to P63	13-G						
Ī	P64 to P67	5						
Ī	P120 to P125							
Ī	P132 to P134	19	Output	Set to low-level output by software and leave open.				
Ī	EO0, EO1	DTS-EO1		Leave open.				
	VCOL, VCOH	DTS-AMP	Input	Set to pin disabled status by software and leave open.				
ı	AMIFC, FMIFC							
	IC	_	_	Connect directly to GND or GNDPORT.				

Type 2 Type 8 Data IN O OIN/OUT Output disable Schmitt-triggered input with hysteresis characteristics Type 10 Type 5 Data Data -⊙IN/OUT O IN/OUT Open drain Output Output disable disable Input enable Type 11-A Type 5-G
 → VDD
 V_{DD} Data Data OIN/OUT Output O IN/OUT disable P-ch Comparator Output N-ch disable ₩N-ch VREF (Threshold voltage) Input enable

Figure 3-1. Pin Input/Output Circuits (1/2)

Remark All V_{DD} and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as V_{DD}PORT and GNDPORT, respectively.

Figure 3-1. Pin Input/Output Circuits (2/2)

Remark All V_{DD} and GND in the above figures are the positive power supply and ground potential of the ports, and should be read as V_{DD}PORT and GNDPORT, respectively.

4. MEMORY SPACE

Figure 4-1 shows the μ PD178002 and 178003 memory map.

FFFFH Special function registers (SFR) 256 × 8 bits FF00H FEFFH General-purpose registers 32×8 bits FEE0H FEDFH Internal high-speed Data memory RAM space nnnnH 512×8 bits Program area FD00H 1000H **FCFFH** 0FFFH CALLF entry area H0080 07FFH Reserved Program area H0800 007FH nnnnH + 1 CALLT table area nnnnH 0040H 003FH Program memory Internal ROM Note space Vectored table area 0000H 0000H

Figure 4-1. Memory Map

Note The internal ROM capacity depends on the product (see the following table).

Part Number	Last Address of Internal ROM			
	nnnnH			
μPD178002	3FFFH			
μPD178003	5FFFH			

5. PERIPHERAL HARDWARE FUNCTION FEATURES

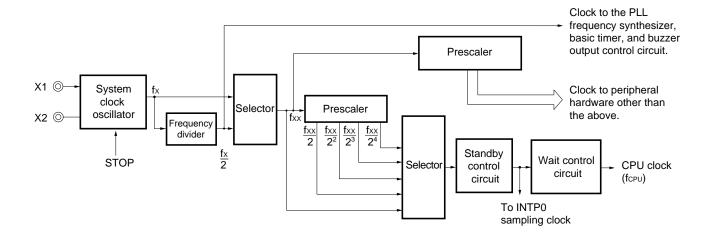
5.1 Ports

Total:

The following four types of I/O ports are available.

CMOS input (P00): 1
CMOS input/output (P01 to P06, port 1 to port 5, P64 to P67, port 12): 54
N-ch open-drain input/output (P60 to P63): 4
N-ch open-drain output (Port 13): 3

Table 5-1. Port Functions

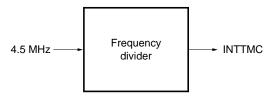

62

Name	Pin Name	Function
Port 0	P00	Input only
	P01 to P06	Input/output port. Input/output can be specified in 1-bit units.
Port 1	P10 to P15	Input/output port. Input/output can be specified in 1-bit units.
Port 2	P20 to P27	Input/output port. Input/output can be specified in 1-bit units.
Port 3	P30 to P37	Input/output port. Input/output can be specified in 1-bit units.
Port 4	P40 to P47	Input/output port. Input/output can be specified in 8-bit units. The test flag (KRIF) is set to 1 by falling edge detection.
Port 5	P50 to P57	Input/output port. Input/output can be specified in 1-bit units.
Port 6	P60 to P63	N-ch open-drain input/output port. Input/output can be specified in 1-bit units. LEDs can be driven directly.
	P64 to P67	Input/output port. Input/output can be specified in 1-bit units.
Port 12	P120 to P125	Input/output port. Input/output can be specified in 1-bit units.
Port 13	P132 to P134	N-ch open-drain output port.

5.2 Clock Generator

The instruction execution time can be changed as follows. 0.44 μ s/0.88 μ s/1.78 μ s/3.56 μ s/7.11 μ s/14.22 μ s (4.5 MHz crystal resonator for system clock.)

Figure 5-1. Clock Generator Block Diagram



5.3 Timer

Three timer channels are incorporated.

Basic timer: 1 channel8-bit timer/event counter: 2 channels

Figure 5-2. Basic Timer Block Diagram

Internal bus → INTTM1 8-bit compare register (CR10) 8-bit compare register (CR20) Selector Match⁵ Match ► INTTM2 $f_{xx}/2$ to $f_{xx}/2$ 9 8-bit timer $f_x/2^{11}$ Selector counter 1 (TM1) 8-bit timer counter 2 (TM2) TI1/P33 ① Selector Clear Clear fxx/2 to fxx/2 9 Selector $f_x/2^{11}$ Selector TI2/P34 (0) Internal bus

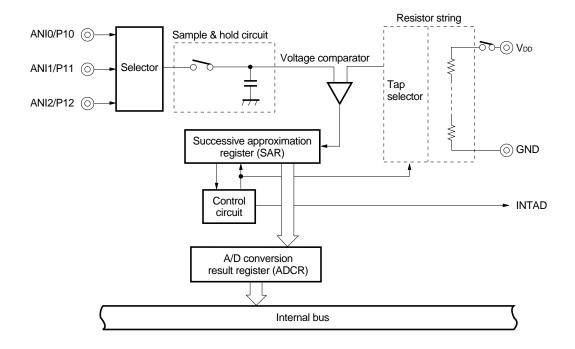
Figure 5-3. Block Diagram of 8-Bit Timer/Event Counter

5.4 Buzzer Output Control Circuit

Clocks with the following frequencies can be output as buzzer (BEEP) output.

• 1.5 kHz/3 kHz/6 kHz (4.5 MHz crystal resonator for system clock)

Figure 5-4. Block Diagram of Buzzer Output Control Circuit

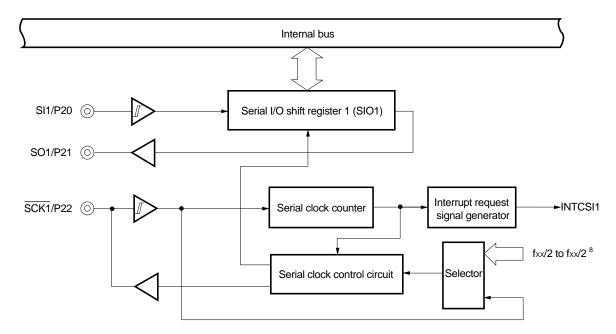

★ 5.5 A/D Converter

An A/D converter consisting of three 8-bit resolution channels is incorporated.

The following two A/D conversion operation start-up methods are available.

- Hardware start
- · Software start

Figure 5-5. A/D Converter Block Diagram



5.6 Serial Interfaces

One clocked serial interface channel is incorporated.

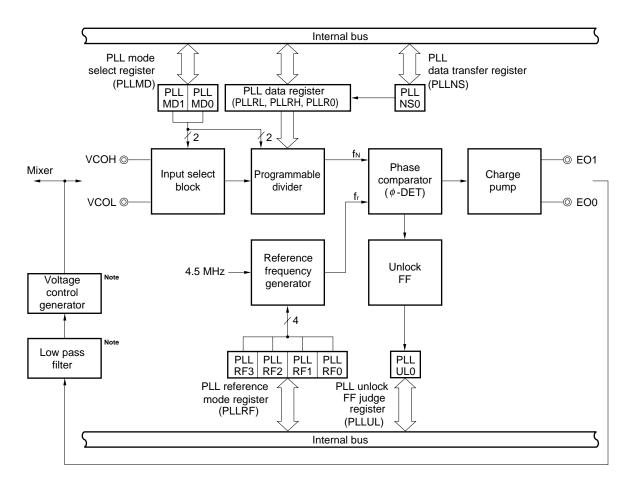
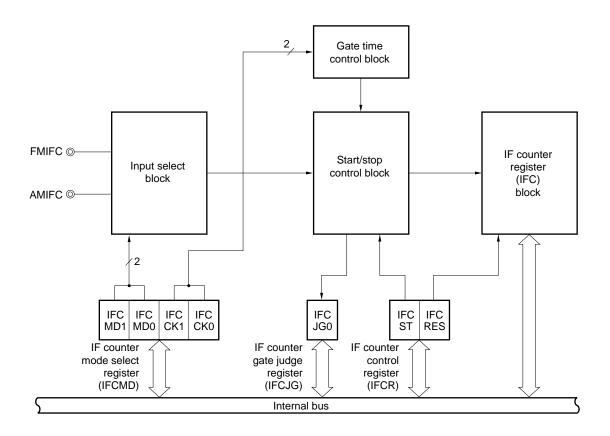

Serial interface channel 1 operates in the 3-wire serial I/O mode where MSB/LSB first can be switched.

Figure 5-6. Block Diagram of Serial Interface Channel 1

5.7 PLL Frequency Synthesizer


Figure 5-7. Block Diagram of PLL Frequency Synthesizer

Note External circuit

5.8 Frequency Counter

Figure 5-8. Frequency Counter Block Diagram

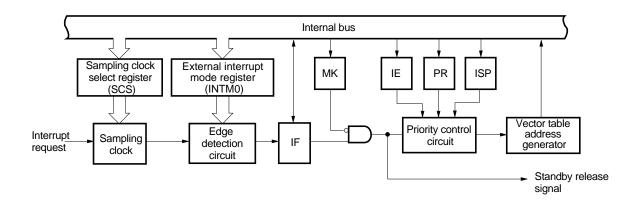
6. INTERRUPT FUNCTIONS AND TEST FUNCTIONS

6.1 Interrupt Functions

A total of 8 interrupt sources are provided, divided into the following two types.

Maskable: 7Software: 1

Table 6-1. Interrupt Source List


Interrupt	Note 1 Default		Interrupt Source	Internal/	Vector Table	Basic Configuration
Туре	Priority	Name	Trigger	External	Address	TypeNote 2
Maskable	0	INTP0	Pin input edge detection	External	0006H	(A)
	1	INTP1			0008H	(B)
	2	INTCSI1	End of serial interface channel 1 transfer	Internal	0016H	(C)
	3	INTTMC	Generation of matching signal of basic timer		0018H	
	4	INTTM1	Generation of matching signal of 8-bit timer/event counter 1		001CH	
	5	INTTM2	Generation of matching signal of 8-bit timer/event counter 2		001EH	
	6	INTAD	End of conversion by A/D converter		0020H	
Software	_	BRK	Execution of BRK instruction	_	003EH	(D)

Notes 1. The default priority is a priority order when several maskable interrupts are generated at the same time. 0 is the highest order and 6 is the lowest order.

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 6-1.

Figure 6-1. Basic Configuration of Interrupt Function (1/2)

(A) External maskable interrupt (INTP0)

(B) External maskable interrupt (INTP1)

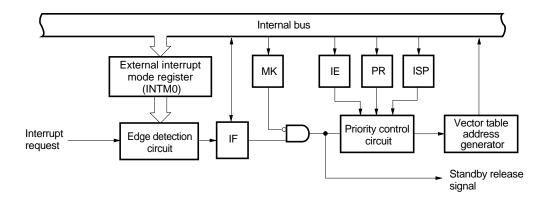
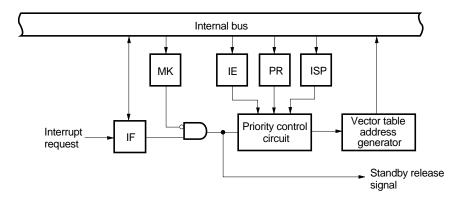
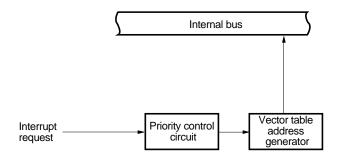




Figure 6-1. Basic Configuration of Interrupt Function (2/2)

(C) Internal maskable interrupt

(D) Software interrupt

IF: Interrupt request flagIE: Interrupt enable flagISP: In-service priority flagMK: Interrupt mask flagPR: Priority specification flag

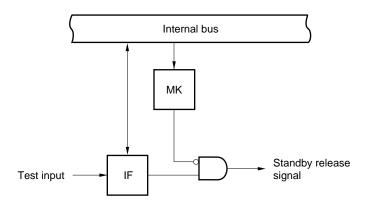
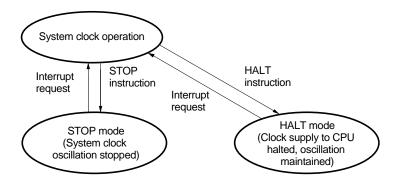

6.2 Test Function

Table 6-2 shows a test function available.

Table 6-2. Test Input Source List

	Internal/External				
Name	Name Trigger				
INTPT4	Port 4 falling edge detection	External			

Figure 6-2. Basic Configuration of Test Function


IF: Test input flagMK: Test mask flag

7. STANDBY FUNCTION

The following two standby functions are available for further reduction of system current consumption.

- HALT mode: In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode: In this mode, oscillation of the system clock is stopped. All the operations performed on the system clock are suspended, resulting in extremely small power consumption.

Figure 7-1. Standby Function

8. RESET FUNCTION

The following two reset methods are available.

- External reset by RESET signal input
- Internal reset by Power On Clear (POC).

9. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand 1st Operand	#byte	А	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
г	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
В,С											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]													
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW Note						INCW, DECW PUSH, POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
sfr.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
saddr.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
PSW.bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
[HL].bit						MOV1	ВТ	SET1
							BF	CLR1
							BTCLR	
CY	MOV1	MOV1	MOV1	MOV1	MOV1			SET1
	AND1	AND1	AND1	AND1	AND1			CLR1
	OR1	OR1	OR1	OR1	OR1			NOT1
	XOR1	XOR1	XOR1	XOR1	XOR1			

(4) Call instructions/branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR, BC, BNC BZ, BNZ
Compound instruction					BT, BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol		Conditions		Ratings	Unit
Supply voltage	V _{DD}				-0.3 to +7.0	V
Input voltage	Vı				-0.3 to V _{DD} + 0.3	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Output withstand voltage	V _{BDS}	P132 to P134	N-ch open drain		-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P12	Analog input pin		-0.3 to V _{DD} + 0.3	V
Output current, high	Іон	Per pin		-10	mA	
		Total for P01 to I P60 to P67, P12	P06, P30 to P37, P56, P57 0 to P125	-15	mA	
		Total for P10 to I P55, P132 to P1	P15, P20 to P27, P40 to P4	47, P50 to	-15	mA
Output current, low	louNote	Per pin		Peak value	15	mA
				rms value	7.5	mA
Operating ambient temperature	Та				-40 to +85	°C
Storage temperature	T _{stg}				-65 to +150	°C

Note The rms value should be calculated as follows: [rms value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Recommended Supply Voltage Ranges ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{DD1}	During CPU operation and PLL operation.	4.5		5.5	V
	V _{DD2}	While the CPU is operating and the PLL is stopped. Cycle time: $T_{CY} \ge 0.89~\mu s$	3.5		5.5	V
	V _{DD3}	While the CPU is operating and the PLL is stopped. Cycle time: $T_{CY} = 0.44 \ \mu s$	4.5		5.5	V

Remark Tcy: Cycle time (minimum instruction execution time)

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

(1/3)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0.7Vpb		V _{DD}	V
	V _{IH2}	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0.85Vpd		V _{DD}	V
	VIH3	P60 to P63 (N-ch open drain)		0.7V _{DD}		V _{DD}	V
Input voltage, low	V _{IL1}	P10 to P15, P21, P23, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P64 to P67, P120 to P125		0		0.3V _{DD}	V
	V _{IL2}	P00 to P06, P20, P22, P24 to P27, P33, P34, RESET		0		0.15Vpd	V
	V _{IL3}	P60 to P63 (N-ch open drain)		0		0.2V _{DD}	V
Output voltage, high	Vон1		$4.5 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ IOH = -1 mA	V _{DD} - 1.0			V
			$3.5 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V},$ $\text{IOH} = -100 \ \mu\text{A}$	V _{DD} - 0.5			V
Output voltage, low	Vol1	P50 to P57, P60 to P63	VDD = 4.5 to 5.5 V, IOH = 15 mA		0.4	2.0	V
		P01 to P06, P10 to P15, P20 to P27, P30 to P37, P40 to P47, P64 to P67, P120 to P125, P132 to P134	VDD = 4.5 to 5.5 V, IOL = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	$VDD = 4.5$ to 5.5 V, N-ch open drain, pulled-up $(R = 1 \text{ K}\Omega)$			0.2V _{DD}	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 3.5 to 5.5 V)

(2/3)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage	ILIH1	P00 to P06, P10 to P15, P20 to P27,	VIN = VDD			3	μΑ
current, high		P30 to P37, P40 to P47, P50 to P57,					
		P64 to P67, P120 to P125, RESET					
	ILIH2	P60 to P63	VIN = VDD			80	μΑ
Input leakage	ILIL1	P00 to P06, P10 to P15, P20 to P27,	VIN = 0 V			-3	μΑ
current, low		P30 to P37, P40 to P47, P50 to P57,					
		P64 to P67, P120 to P125, RESET					
	ILIL2	P60 to P63				_3Note	μΑ
Output leakage	Ісон	P132 to P134	Vout = Vdd			3	μΑ
current, high							
Output leakage	ILOL	P132 to P134	Vout = 0 V			-3	μΑ
current, low							
Output off leakage	ILOF	EO0, EO1	Vout = Vdd,			±1	μΑ
current			Vout = 0 V				

Note When an input instruction is executed to P60 to P63, a low-level input leakage current of $-200 \,\mu\text{A}$ (MAX.) flows only for one clock. At times other than this 1-clock interval, a $-3 \,\mu\text{A}$ (MAX.) current flows.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Reference Characteristics (TA = 25°C, VDD = 5 V)

(1/2)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high	І он1	EO0	Vout = Vdd - 1 V		-4		mA
		EO1		-1.8			mA
Output current, low	I _{OL1}	EO0	Vout = 1 V		6		mA
		EO1		3.5			mA

MIN.

4.5

3.5

2.6

Т

Parameter

Power supply

currentNote 1

Data retention

Data retention

power supply voltage

power supply current

DC Characteristics (TA = -40 to +85°C, VDD = 3.5 to 5.5 V)

While the CPU is operating

While the CPU is operating

and the PLL is stopped

fx = 4.5 MHz operation

When the crystal oscillation

When the crystal oscillation is stopped

When power off by power on clear is detected

When the crystal oscillation $T_A = 25^{\circ}C$, $V_{DD} = 5 \text{ V}$

HALT Mode Pin X1 sine wave

is operating

is stopped

input $V_{IN} = V_{DD}$.

and the PLL is stopped fx = 4.5 MHz operation

Symbol

 I_{DD1}

 I_{DD2}

I_{DD3}

I_{DD4}

V_{DDR1}

 V_{DDR2}

 V_{DDR3}

I_{DDR1}

I_{DDR2}

		(3/3)	
YP.	MAX.	Unit	
2.5	15	mA	
4.0	27	mA	
0.7	1.5	mA	
1.0	2.0	mA	
	5.5	V	
	5.5	V	

5.5

4

30

2

2

Notes 1. The current flowing to the ports is not included.

2. When the processor clock control register (PCC) is set to 00H, and the oscillation mode select register (OSMS) is set to 00H.

Conditions

 $T_{CY} = 0.89 \ \mu s^{Note 2}$

 $T_{CY} = 0.44 \ \mu s^{Note 3}$

 $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$ $T_{CY} = 0.89 \ \mu \text{s}^{\text{Note 2}}$

 $T_{CY} = 0.44 \ \mu s^{Note 3}$

 $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$

 $T_{CY} = 0.44 \ \mu s$

 $T_{CY} = 0.89 \ \mu s$

3. When PCC is set to 00H and OSMS is set to 01H.

Remarks 1. Tcy: Cycle time (minimum instruction execution time)

2. fx: System clock oscillation frequency.

Reference Characteristics (T_A = 25°C, V_{DD} = 5 V)

(2/2)

V

μΑ

μΑ

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Power supply	I _{DD5}	During CPU operation	$T_{CY} = 0.44 \ \mu s^{Note}$		7		mA
current		and PLL operation.					
		VCOH pin sine wave					
		input					
		fin = 130 MHz,					
		VIN = 0.15 V _{p-p}					

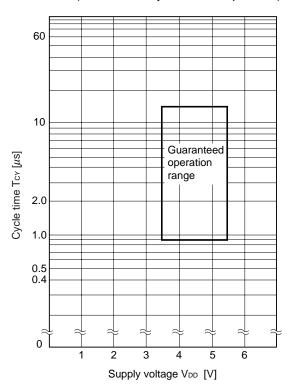
Note When the processor clock control register (PCC) is set to 00H, and the oscillation mode select register (OSMS) is set to 01H.

Remark Tcy: Cycle time (minimum instruction execution time)

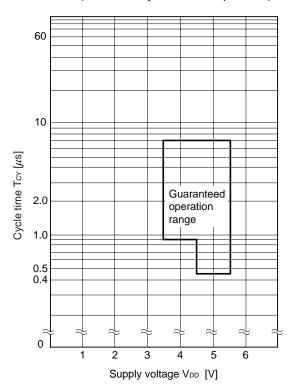
AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 3.5 \text{ to } 5.5 \text{ V}$)

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Cycle time	Тсч	$fxx = fx/2^{\text{Note 1}}, fx = 4.5 \text{ MH}.$	0.89		14.22	μs	
(Minimum instruction		$f_{XX} = f_X^{\text{Note 2}},$	4.5 V ≤ V _{DD} ≤ 5.5 V	0.44		7.11	μs
execution time)		fx = 4.5 MHz operation	3.5 V ≤ V _{DD} < 4.5 V	0.89		7.11	μs
TI1, TI2 input	f⊤ı	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	5 V ≤ V _{DD} ≤ 5.5 V			4.5	MHz
frequency		3.5 V ≤ V _{DD} < 4.5 V		0		275	kHz
TI1, TI2 input high-/	tтıн,	4.5 V ≤ V _{DD} ≤ 5.5 V		111			ns
low-level width	t ⊤ı∟	3.5 V ≤ V _{DD} < 4.5 V	1.8			μs	
Interrupt input high-/	tinth,	INTP0		8/f _{sam} Note 3			μs
low-level width	tintl	INTP1	10			μs	
RESET low level	trsL			10			μs
width							


Notes 1. When the oscillation mode select register (OSMS) is set to 00H.

- 2. When OSMS is set to 01H.
- 3. Selection of $f_{sam} = f_{xx}/2^N$, $f_{xx}/32$, $f_{xx}/64$, $f_{xx}/128$ is possible with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register (SCS) (when N = 0 to 4).


Remarks 1. fxx: System clock frequency (fx or fx/2)

2. fx: System clock oscillation frequency

Tcy **vs. V**DD (At fxx = fx/2 system clock operation)

Tcy **vs. V**DD (At fxx = fx system clock operation)

(2) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 3.5 \text{ to } 5.5 \text{ V}$)

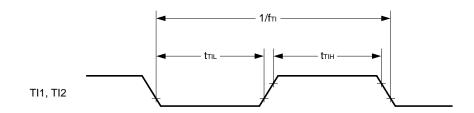
(a) Serial interface channel 1

(i) 3-wire serial I/O mode (SCK1 ... internal clock output)

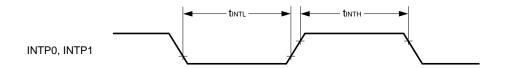
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkcY1	4.5 V ≤ V _{DD} ≤ 5.5 V	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1600			ns
SCK1 high-/low-level width	t кн1,	4.5 V ≤ V _{DD} ≤ 5.5 V	tксүу/2 — 50			ns
	t _{KL1}	3.5 V ≤ V _{DD} < 4.5 V	tkcy9/2 - 100			ns
SI1 setup time (to SCK1↑)	tsıĸ1	4.5 V ≤ V _{DD} ≤ 5.5 V	100			ns
		3.5 V ≤ V _{DD} < 4.5 V	150			ns
SI1 hold time (from SCK1↑)	t KSI1		400			ns
SO1 output delay time from SCK1↓	t ks01	C = 100 pF ^{Note}			300	ns

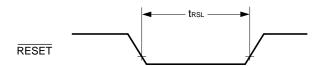

Note C is the load capacitance of the SO1 output line.

(ii) 3-wire serial I/O mode (SCK1 ... external clock input)

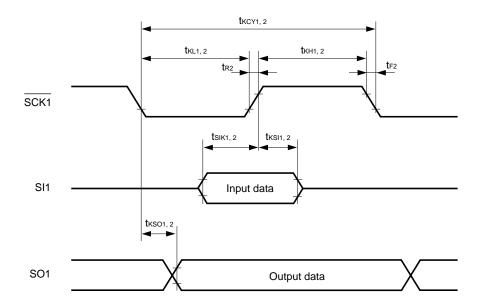

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK1 cycle time	tkCY2	$4.5 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	800			ns
		3.5 V ≤ V _{DD} < 4.5 V	1600			ns
SCK1 high-/low-level width	tĸH2,	4.5 V ≤ V _{DD} ≤ 5.5 V	400			ns
	t _{KL2}	$3.5 \text{ V} \leq \text{V}_{DD} < 4.5 \text{ V}$	800			ns
SI1 setup time (to SCK1↑)	tsik2		100			ns
SI1 hold time (from SCK1↑)	tks12		400			ns
SO1 output delay time from SCK1↓	tkso2	C = 100 pF ^{Note}			300	ns
SCK1 rise/fall time	t _{R2} , t _{F2}				1000	ns

Note C is the load capacitance of the SO1 output line.


AC Timing Test Points (excluding X1 input)


TI Timing

Interrupt Input Timing



RESET Input Timing

Serial Transfer Timing

3-wire serial I/O mode:

A/D Converter Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$)

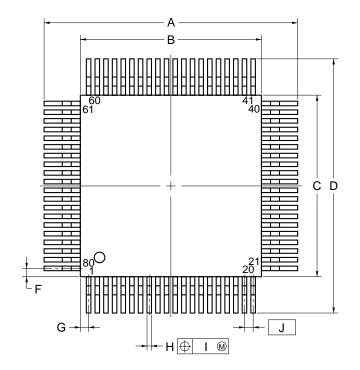
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Conversion overall					±3.0	LSB
error						
Conversion time	tconv		22.2		44.4	μs
Sampling time	tsamp		15/fxx			μs
Analog input voltage	VIAN		0		V _{DD}	V

Remarks 1. fxx: System clock frequency (fx/2)

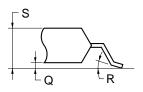
2. fx: System clock oscillation frequency

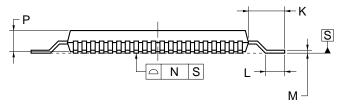
PLL Characteristics (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operating	f _{IN1}	VCOL pin MF mode Sine wave input V _{IN} = 0.1 V _{p-p}	0.5		3	MHz
frequency	f _{IN2}	VCOL pin HF mode Sine wave input V _{IN} = 0.2 V _{P-P}	9		55	MHz
	fınз	VCOH pin VHF mode Sine wave input $V_{IN} = 0.15 V_{P-P}$	60		160	MHz


IFC Characteristics (T_A = -40 to +85°C, V_{DD} = 4.5 to 5.5 V)

Parameter	Symbol	Conditions		TYP.	MAX.	Unit
Operating frequency	fin4	AMIFC pin AMIF count mode Sine wave input V _{IN} = 0.1 V _{P-P} Note			0.5	MHz
	f _{IN5}	FMIFC pin FMIF count mode Sine wave input V _{IN} = 0.1 V _{p-p} Note	10		11	MHz
	f _{IN6}	FMIFC pin AMIF count mode Sine wave input $V_{IN} = 0.1 \ V_{p-p}$ Note	0.4		0.5	MHz


Note The condition of a sine wave input of $V_{IN} = 0.1 \ V_{P^-P}$ is the standard value of this device during standalone operation, so in consideration of the effect of noise, operation of an input amplitude condition of $V_{IN} = 0.15 \ V_{P^-P}$ is recommended.


11. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.2±0.4
В	14.0±0.2
С	14.0±0.2
D	17.2±0.4
F	0.825
G	0.825
Н	0.30±0.10
ı	0.13
J	0.65 (T.P.)
K	1.6±0.2
L	0.8±0.2
М	$0.15^{+0.10}_{-0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.

S80GC-65-3B9-6

12. RECOMMENDED SOLDERING CONDITIONS

The μ PD178002 and 178003 should be soldered and mounted under the following recommended conditions. For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E).**

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 12-1. Surface Mounting Type Soldering Conditions

 μ PD178002GC-xxx-3B9: 80-pin plastic QFP (14 x 14 mm, 0.65 mm pitch) μ PD178003GC-xxx-3B9: 80-pin plastic QFP (14 x 14 mm, 0.65 mm pitch)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Partial heating Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. DIFFERENCES AMONG μ PD178003 AND μ PD178018A SUBSERIES

	Product Name	μPD178003 Subseries		μPD178018A Subserie	es
Items	ms μ PI		μPD178006A	μPD178018A	μPD178P018A
ROM		24 Kbytes (Mask ROM)	48 Kbytes (Mask ROM)	60 Kbytes (Mask ROM)	60 Kbytes (One-time PROM)
RAM	High-speed RAM	512 bytes	1024 byte		
	Buffer RAM	Not provided	32 bytes		
	Expanded RAM	Not provided		2048 bytes	
Timer		3 channels • Basic timer: 1 channel • 8-bit timer/event counter: 2 channels	5 channels • Basic timer: • 8-bit timer/event counter: • 8-bit timer: • Watchdog timer: 1 channel • Watchdog timer: 1 channel		
Serial inte	erface	1 channel • 3-wire mode: 1 channel	 2 channels 3-wire/SBI/2-wire/I²C bus mode selectable: 1 channel 3-wire serial I/O mode (automatic data transmit/receive function for up to 32 bytes provided on chip): 1 channel 		nsmit/receive function
A/D conv	erter	3 channels	6 channels		
D/A conv	erter (PWM output)	Not provided	Provided		
EO1 pin	output circuit	Buffer type (high impedance function	Buffer type (high impedance function supported)		ction supported)

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD178003 Subseries. Also refer to **(5) Cautions on using development tools**.

(1) Language processing software

RA78K0	Assembler package common to 78K/0 Series
CC78K0	C compiler package common to 78K/0 Series
DF178018	Device file for μPD178003 and μPD178018A Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(2) PROM writing tools

PG-1500	PROM programmer
PG-178P018GC	Programmer adapters connected to PG-1500
PA-178P018KK-T	
PG-1500 controller	PG-1500 control program

★ (3) Debugging tools

• When IE-78K0-NS in-circuit emulator is used

0-NS In	-circuit emulator common to 78K/0 Series
00-MC-PS-B Po	ower supply unit for IE-78K0-NS
0-NS-PA ^{Note} Pe	erformance board for enhancing and extending the function of the IE-78K0-NS
	sterface adapter when using PC-9800 series as host machine (excluding notebook PCs) (C bus upported)
	C card and interface cable when using notebook PC of PC-9800 series as host machine PCMCIA socket supported)
00-PC-IF-C In	terface adapter when using IBM PC/AT™-compatible as host machine (ISA bus supported)
00-PCI-IF In	sterface adapter required when using a PCI bus incorporated computer as host machine
018-NS-EM1 Er	mulation board to emulate μ PD178003, 178018A Subseries
GC Er	mulation probe for 80-pin plastic QFP (GC-3B9 type)
00GC-80 Sc	ocket to be mounted on a target system board made for 80-pin plastic QFP (GC-3B9 type)
O-NS In	stegrated debugger for IE-78K0-NS
(0 S)	ystem simulator common to 78K/0 Series
018 De	evice file for μ PD178003 and μ PD178018A Subseries
(P 00-PC-IF-C In 00-PCI-IF In 018-NS-EM1 Er GC Er 00GC-80 Sc 0-NS In	PCMCIA socket supported) Interface adapter when using IBM PC/AT™-compatible as host machine (ISA bus supported) Interface adapter required when using a PCI bus incorporated computer as host machine interface adapter required when using a PCI bus incorporated computer as host machine interface adapter required when using a PCI bus incorporated computer as host machine interface adapter required when using a PCI bus incorporated computer as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine (ISA bus supported) Interface adapter when using IBM PC/AT™-compatible as host machine (ISA bus supported) Interface adapter when using IBM PC/AT™-compatible as host machine (ISA bus supported) Interface adapter when using IBM PC/AT™-compatible as host machine (ISA bus supported) Interface adapter required when using a PCI bus incorporated computer as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine interface adapter as host machine interface adapter and host machine interface adapter and host machine interface adapter and host machine interface adapter adapter and host machine interface adapter adapter adapter and host machine interface adapter

Note Under development

• When IE-78001-R-A in-circuit emulator is used

	IE-78001-R-A	In-circuit emulator common to 78K/0 Series
	IE-70000-98-IF-C	Interface adapter when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)
IE-70000-PC-IF-C Interface adapter v		Interface adapter when using IBM PC/AT-compatible as host machine (ISA bus supported)
*	IE-70000-PCI-IF	Adapter required when using a PCI bus incorporated computer as host machine
	IE-78000-R-SV3	Interface adapter and cable when using EWS as host machine
	IE-178018-NS-EM1	Emulation board to emulate μ PD178003, 178018A Subseries
	IE-78K0-R-EX1	Emulation probe conversion board required when using IE-178018-NS-EM1 on IE-78001-R-A
	IE-178018-R-EM	Emulation board to emulate μ PD178003, 178018A Subseries
	EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-3B9 type)
	EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-3B9 type)
	EV-9900	Tool used for removing μ PD178P018AKK-T from EV-9200GC-80
	ID78K0	Integrated debugger for IE-78001-R-A
	SM78K0	System simulator common to 78K/0 Series
	DF178018	Device file for μPD178003 and μPD178018A Subseries

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 Series
MX78K0	OS for 78K/0 Series

(5) Cautions on using development tools

- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF178018.
- The RX78K/0 is used in combination with the RA78K0 and the DF178018.
- The NP-80GC is a product made by Naito Densei Machida Mfg. Co., Ltd (TEL +81-44-822-3813). Contact an NEC distributor regarding the purchase of this product.
- For third party development tools, see the **Single-chip Microcontroller Development Tools Selection Guide (U11069E)**.
- The host machine and OS suitable for each software are as follows:

Host Machine	PC	EWS
[OS]	PC-9800 series [Windows™]	HP9000 series 700™ [HP-UX™]
	IBM PC/AT-compatible	SPARCstation™ [SunOS™ and Solaris™]
Software	[Japanese/English Windows]	NEWS (RISC)™ [NEWS-OS™]
RA78K0	\sqrt{Note}	√
CC78K0	√Note	√
PG-1500 controller	√Note	_
ID78K0-NS	√	_
ID78K0	V	V
SM78K0	V	_
RX78K/0	√Note	V
MX78K0	\sqrt{Note}	√

Note DOS-based software

APPENDIX C. RELATED DOCUMENTS

Documents Related to Devices

	Document Name		Document No.	
			English	Japanese
	μPD178P018A Data Sheet		U12642E	U12642J
۲	μPD178003 Subseries User's Manual		U13033E	U13033J
	78K/0 Series User's Manual—Instruction		U12326E	U12326J
	78K/0 Series Instruction Set		_	U10904J
	78K/0 Series Instruction Table		_	U10903J
	78K/0 Series Application Note	Basics (II)	U10121E	U10121J

Documents Related to Development Tools (User's Manuals)

	Document Name		Document No.	
			English	Japanese
	RA78K0 Assembler Package	Operation	U11802E	U11802J
		Assembly Language	U11801E	U11801J
		Structured Assembly	U11789E	U11789J
		Language		
	RA78K Series Structured Assembler Preprocessor		EEU-1402	U12323J
	CC78K0 C Compiler	Operation	U11517E	U11517J
		Language	U11518E	U11518J
	PG-1500 PROM Programmer	PG-1500 PROM Programmer		U11940J
	PG-1500 Controller PC-9800 series (MS-DOS) Based		EEU-1291	EEU-704
	PG-1500 Controller IBM PC series (PC DOS) Based		U10540E	EEU-5008
*	IE-78K0-NS		_	U13731J
	IE-78001-R-A		To be prepared	To be prepared
	E-78K0-R-EX1		To be prepared	To be prepared
*	IE-178018-NS-EM1		U14012E	U14012J
	IE-178018-R-EM		U10668E	U10668J
	EP-78230		EEU-1515	EEU-985
	SM78K0 System Simulator Windows Based	Reference	U10181E	U10181J
	SM78K Series System Simulator	External Part	U10092E	U10092J
		User Open Interface		
		Specifications		
*	ID78K0-NS Integrated Debugger Windows Based	Reference	U12900E	U12900J
	ID78K0 Integrated Debugger EWS Based	Reference	_	U11151J
	ID78K0 Integrated Debugger PC Based	Reference	U11539E	U11539J
	ID78K0 Integrated Debugger Windows Based	Guide	U11649E	U11649J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
		English	Japanese
78K/0 Series Real-Time OS	Fundamentals	U11537E	U11537J
	Installation	U11536E	U11536J
78K/0 Series OS MX78K0	Fundamental	U12257E	U12257J

Other Related Documents

Document Name	Document No.	
	English	Japanese
SEMICONDUCTORS SELECTION GUIDE Products & Packages (CD-ROM)	X13769X	
Semiconductor Device Mounting Technology Manual	C10535E	C10535J
Quality Grades on NEC Semiconductor Devices	C11531E	C11531J
NEC Semiconductor Device Reliability/Quality Control System	C10983E	C10983J
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E	C11892J
Guide to Microcomputer-Related Products by Third Party	_	U11416J

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130

Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil

Tel: 55-11-6465-6810 Fax: 55-11-6465-6829

J99.1

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.